Mathematics at ICEF Master's programme: What to be prepared for

Daniil Esaulov

ICEF

November 12, 2023

About me

- ICEF Master's programme graduate (2012)
- First degree from the Faculty of Mechanics and Mathematics, Lomonosov MSU
- Analytics Team lead at Avito
- Lecturer and class teacher at ICEF BSc programme
(1) Refresher part
- Multivariate Calculus and Optimization
- Linear Algebra
- Matrix Algebra
- Eigenvalues/eigenvectors, diagonalization and Jordan form
- Quadratic forms
- Projections
- Probability theory and statisticts
(2) Main part
- Differential equations
- Phase diagrams, stability and Linearization
- Dynamic Optimization in Continious and Discrete time
- Stochastic Calculus
- Sigma algebras and Filtrations
- Martingales
- Ito's calculus
- Black-Scholes model
- Literature
- C. P. Simon, L. Blume, Mathematics for economists, W.W. Norton company Inc., 1994 or latest edition
- H. Anton, C. Rorres, Elementary linear algebra, 11th edition
- Newbold P., Carlson W., Thorne B. (2019). Statistics for Business and Economics, 9th edition.
- Ватутин В.А. Ивченко Г.И., Медведев Ю.И. и др. Теория вероятностей и математическая статистика в задачах
- Summer Bridge School

Types of tasks. Calculus

Problem 1.
A monopolist producing a single output has two types of customers. If it produces Q_{1} units for customers of type 1 , then these customers are willing to pay a price of $50-5 Q_{1}$ dollars per unit. If it produces Q_{2} units for customers of type 2, then these customers are willing to pay a price of $100-10 Q_{2}$ dollars per unit. The monopolist's cost of manufacturing Q units of output is $90+20 Q$ dollars.
In order to maximize profits, how much should the monopolist produce for each market?

Problem 2.
An economy has three markets. The supply functions for the three gooods are given by

$$
\begin{gathered}
q_{1}^{S}=-20-p_{1}+3 p_{2}+3 p_{3} \\
q_{2}^{S}=50+2 p_{1}-p_{2}-p_{3} \\
q_{1}^{S}=-50+4 p_{1}+p_{2}
\end{gathered}
$$

and the demand functions for the three goods are given by

$$
\begin{gathered}
q_{1}^{D}=130-2 p_{1}+p_{3} \\
q_{2}^{D}=100-2 p_{1}-3 p_{2}+2 p_{3} \\
q_{3}^{D}=100+p_{1}+p_{2}-2 p_{3} .
\end{gathered}
$$

Finf the equlibrium prices using matrix algebra.

